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Chapter 15

Physical-Chemical Life Support Systems

William R. Humphries, Panchalam K. Seshan, and Peggy L. Evanich

Physical-chemical life support systems can be either open,
nonregenerative systems or closed, regenerative systems.
Open, nonregenerative systems are those in which both the
materials essential to sustain human life and the reagents for
treatment and contaminant removal are provided as expend-
able supplies. Such systems are most suited for short-dura-
tion missions. In contrast, closed, regenerative systems em-
ploy selected chemical processes for recovery of air and wa-
ter from waste products and for regeneration of contaminant
removal adsorbents and other reagents required for future
long-duration missions. Food supplies are provided as ex-
pendables for both open and closed physical-chemical life
support systems. As the duration of human space missions
increases and as missions focus on the exploration of envi-
ronments far from Earth so as to make resupply prohibitive,
regenerative physical-chemical life support systems will be-
come increasingly mandatory. For support of such remote,
long-duration missions, many attributes, such as reliability,
maintainability, and controllability, must become inherent in
the life support system design to prevent undue safety haz-
ards to the crew, to maximize crew productivity, and to en-
hance crew psychological well-being.

1. History and Evolution of Life Support Capability in
Spacecraft*

A. Overview

With the evolution of human space flight has come a wealth
of knowledge on supporting human life in the hostile envi-
ronment of outer space. Each successive manned space pro-
gram has built and improved upon the last, learning from the
successes and failures experienced on each mission. As crew
size and mission duration and complexity have increased, the
spacecraft Environmental Control and Life Support System

The authors express sincere appreciation for the contributions of James
L. Reuter and Richard G. Schunk (NASA Marshall Space Flight Center,
U.S.A.); Bryce L. Diamont (McDonnell-Douglas Space Systems Company,
U.S.A)); Joseph F. Ferrail, Naresh K. Rohatgi, Ph.D., and Darrell L. Jan,
Ph.D. (Jet Propulsion Laboratory, U.S.A.); and Edwin L. Force, Ph.D. (NASA
Ames Research Center, U.S.A.).

*Section 1 of this chapter is adapted from Ref. 41, and used with permis-
sion of the Society of Automotive Engineers, Inc., 1990.
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(ECLSS) has been adapted and improved based on lessons
learned from the past.

On early space flights carrying animals, life support sys-
tems used stored consumables and simple open-loop systems.
On early Soviet flights potassium superoxide (KO,) was used
as an oxygen source and as a carbon dioxide adsorber. The
first higher-order living creature placed in Earth orbit was a
female mixed-breed dog named Layka, launched on Sputnik
II by the Soviet Union on November 3, 1957. Layka’s open-
loop life support system was a hermetically sealed, air-con-
ditioned compartment complete with food and water. A typi-
cal U.S. design was that used to sustain a monkey named
Gordo, who rode a ballistic path through space in the nose
cone of a Jupiter missile in December 1958. Carbon dioxide
was absorbed by pellets of baralyme, and the breathing gas
was compressed oxygen from a cylinder. Temperature con-
trol was partially achieved by insulating layers of metal foil
and fiberglass, and water vapor was absorbed by a porous
material. The waste management system consisted of a dia-
per on the monkey. Gordo was provided neither food nor
water.!

Support of human life in space was the next ECLSS goal.
Life support systems have succeeded in supporting human
life on the Moon and for mission durations over a year. The
design of ECLSSs for future manned missions must begin
with a knowledge of past designs. This knowledge should
come from the manned space programs of both the United
States and the Soviet Union. Both countries have been pursu-
ing the manned exploration of space for more than 30 years,
resulting in a considerable experience base.

A summary of the ECLSS on U.S. manned spacecraft is
presented in Table 1 for Mercury, Gemini, Apollo, Skylab,
Spacelab, Space Shuttle, and Space Station. A summary of
the ECLSS on Soviet spacecraft is presented in Table 2 for
Vostok, Voskhod, Soyuz, Salyut, and Mir.

B. ECLSS Design History on U.S. Spacecraft

Manned space flight in the United States began with Alan
Shepard’s 15-min suborbital flight aboard the Freedom 7
Mercury-Redstone 3 spacecraft on May 5, 1961. Thirty years
later the United States is planning to launch a space station
designed to remain in orbit for 30 years. U.S. ECLSS design
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has come a long way since that first Mercury flight, having
since supported human life on Gemini, Apollo, Skylab,
Spacelab, Space Shuttle, and soon on Space Station. Table 1
details the primary facets of ECLSS design for each of these
U.S. spacecraft. The dates listed with each spacecraft give
the period when it was being used for space missions.

1) Mercury (1960—-1963)—The objectives of the Mercury
project were to place manned spacecraft in Earth orbit, ex-
plore human reactions in orbit, test the possibilities of manual
spacecraft control by the pilot, and safely recover astronauts
and capsules from space. Mercury was a pressurized one-
man capsule in the shape of a bell, with 1.56 m3 of habitable
space for the astronaut.2 The Mercury ECLSS is composed
of pressure suit and cabin subsystems. The pressure suit sub-
system was primarily responsible for revitalizing the
astronaut’s atmosphere supply and for controlling his/her tem-
perature and humidity level. The cabin subsystem controlled
cabin ventilation, cabin temperature (the cabin heat exchanger
did not remove water vapor), and atmospheric pressure. The
space suit was normally unpressurized during flight.

2) Gemini (1964-1966)—The Gemini project, an exten-
sion of the Mercury project, was the second phase of the U.S.
plan to land humans on the Moon. Its objectives were to test
crew and capsule behavior for a nonstop 14-day orbit, de-
velop the capability to rendezvous and dock with other space-
craft, perform extravehicular activities, develop methods for
controlling spacecraft reentry flight paths, and provide a ba-
sis for scientific experimentation. Gemini was a pressurized
two-man capsule with 2.26 m3 of habitable space for the as-
tronauts.Z As with Mercury, the Gemini ECLSS was divided
into the pressure suit and cabin subsystems. Gemini improve-
ments over the Mercury ECLSS included supercritical oxy-
gen storage instead of high-pressure storage, an integrated
heat exchanger/water separator, and a mechanically activated
sponge-type water separator.

3) Apollo (1968-1972)—The objectives of the Apollo
project were to land a human on the Moon and return him/her
safely to Earth, explore the Moon from the lunar surface and
from lunar orbit, and demonstrate that humans can move about
and work in an alien environment. The total Apollo space
vehicle included two separate life support systems, one on
the command module (CM) and one on the lunar module
(LM). The CM ECLSS occupied 0.25 m3 of the cabin and
was capable of operating for 14 days. Oxygen and potable
water from fuel cells were supplied from the Apollo service
module, which was attached to the base of the CM. Launch
safety was increased by using a 60 percent oxygen (O;) and
40 percent nitrogen (N») cabin gas mixture during prelaunch
and launch periods, although the suit circuit remained at 100
percent O,. The ascent stage of the Apollo LM was a pressur-
ized two-man craft with 4.5 m3 of habitable space.2 The third
astronaut from the CM remained in the CM in circumlunar
parking orbit until the ascent module returned from the Moon.
In contrast to the Apollo CM ECLSS, the LM ECLSS had
potable water from storage tanks instead of fuel cells, no over-
board venting of urine on the lunar surface, and iodine bacte-

ricide instead of chlorine to avoid corrosion problems antici-
pated between chlorine and the LM sintered nickel sublimator
plates. Unlike the situation in all previous spacecraft, there
were no seats in the LM, so the astronaut had to be accom-
modated from a standing position.

4) Skylab (1973-1974)—The objectives of Skylab, the first
U.S. space station, were to study the effects of long-duration
space flight on humans; study the Earth, Sun, and stars; and
perform experiments in a microgravity environment. Skylab
was a three-person laboratory with a total habitable volume
of 361 m3 (Ref. 2). The crew lived and worked in the two-
level orbital workshop, although most of the ECLSS equip-
ment was located in the airlock module. New ECLSS tech-
niques on Skylab included a mixed O, and N, atmosphere
and two-canister molecular sieves instead of lithium hydrox-
ide (LiOH) canisters to remove carbon dioxide (CQO;), a
method of monitoring iodine concentration in the water sup-
ply, the storage of urine samples in a freezer for analysis on
Earth, and ultraviolet fire detectors. Between missions, when
Skylab was unoccupied, the atmosphere was depressurized
to 13.8 kPa and allowed to decay down to 3.45 kPa until the
next group of astronauts arrived. Depressurization removed
trace contaminants from the cabin to reduce the chance of
fire.

5) Space Shuttle Orbiter (198 1-present)—The objective
of the Space Shuttle Program is to replace expendable launch
vehicles with a reusable transport to increase accessibility to
space at a relatively low cost. Shuttle missions support pri-
vate and commercial ventures in space, including the even-
tual construction of a permanent space station. The Orbiter is
designed to carry an average crew of seven for a nominal
mission of 7 days in a total habitable volume of 74 m3 (Ref.
2). The Orbiter became the first U.S. spacecraft to use a stan-
dard sea-level atmosphere—a gas mixture of 22 percent O,
and 78 percent N, at a total pressure of 101 kPa. Other Or-
biter ECLSS innovations included Halon 1301 fire suppres-
sant; microbial check valves to passively adjust iodine con-
centration in the potable water supply; and a commode for
fecal collection and storage, to be used instead of simple bag
collection.

6) Spacelab (1983—present)—The cylindrical Spacelab
laboratory module, situated in the Space Shuttle cargo bay
during a Spacelab module mission, provides a pressurized,
shirt-sleeve environment for performing experiments in
microgravity. Most of the Spacelab ECLSS is very similar to
the Orbiter system and depends on the Orbiter for its meta-
bolic O, supply. Cabin air is exchanged with the Orbiter
through the Spacelab transfer tunnel. An avionics air loop,
separate from the cabin air loop, is used for air-cooling rack-
mounted instrumentation. Spacelab can remain operational
throughout a Space Shuttle mission.

7) Space Station—The Space Station will serve as a re-
search laboratory in space and potentially as a staging base
for missions to the Moon, Mars, and beyond. The description
of Space Station ECLSS below and in Table 1 is for a crew of
eight for the fully configured Space Station. Space Station
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will be composed of a number of pressurized elements, in-
cluding laboratory modules, habitation modules, nodes, an
airlock, and a logistics module. The planned ECLSS design
will provide a closed system for air and water and will be
more complicated than any ECLSS of the past, all of which
were basically open systems. CO2 will be reduced to recover
the useful O, atoms in the form of water. O, will be produced
by water electrolysis, eliminating the need for O, resupply.
Hygienic wastewater, urine, condensate, and CO; reduction
water will be recycled to keep water resupply to a minimum.
Long-term operation must accommodate simple on-orbit
maintenance requiring little crew time. The above descrip-
tion pertains to a single design variant of Space Station. Some
of the information presented in Table 1 may change before
launch of the first station element. As the present work goes
to press, the design of the entire station is undergoing review
and revision and may change drastically.

C. ECLSS Design History on U.S.S.R. Spacecraft

The first human being in space was Yuriy Alexeyevich
Gagarin, a Soviet Air Force pilot. Launched into Earth orbit
aboard a Vostok capsule by an A-l rocket on April 12, 1961,
Gagarin made one orbit of the Earth, completing the 108-min
mission with little difficulty. The U.S.S.R. has far more ex-
perience with manned space flight than all other nations com-
bined, particularly in the realm of long-duration missions. A
number of cosmonauts have completed stays in space of well
over 300 days. Since 1971, the Soviets have launched eight
space stations, including the currently orbiting Mir station.
Table 2 describes the ECLSS designs on the Soviet Vostok,
Voskhod, Soyuz, Salyut, and Mir spacecraft. In Russian, the
ECLSS is referred to as the Sistema Obespecheniya
Zhiznedeyatelnosti (SOZh), meaning “Life Support System.”

1) Vostok (1960-1963)—The spherical Vostok, with a hab-
itable volume of approximately 3 m3, was the first spacecraft
to carry a human into space. The objectives of the Vostok
program were to test human behavior under microgravity, test
high acceleration and deceleration levels (8—10 g), test and
further develop ground-controlled automatic spacecraft guid-
ance, and make astronomical and geophysical observations.2
The Vostok ECLSS was a simple semiclosed system with a
101-kPa air atmosphere. Cabin ECLSS equipment was re-
sponsible for CO; removal and the control of cabin odor,
humidity, ventilation, temperature, and air supply.3 The cos-
monaut wore a space suit that was ventilated by cabin air and
did not have the capability for air purification or humidity
control. In an emergency, the suit could be supplied with air
and O, from tanks mounted on the Vostok exterior.

2) Voskhod (1964—1965)—The spherical Voskhod capsule
was basically an improved version of the Vostok with a rear-
ranged interior to accommodate three crewmembers. To help
make room for the cosmonauts, Voskhod became the first
spacecraft in which the crew did not wear space suits. Objec-
tives of the Voskhod program were 10 gather data on group
crews and study human behavior outside the capsule.2

Voskhod 2 was equipped with two space suits and an inflat-
able decompression chamber, from which the first space walk
was performed.

3) Soyuz/Soyuz T (1967—present)—Soyuz was designed
primarily for docking with other space vehicles. Objectives
of the Soyuz program were to perfect docking and crew trans-
fer between capsules and Salyut stations, practice craft or-
bital transfer, and perform scientific observations and experi-
ments.? Designed for 7-day missions, the Soyuz was a three-
man vehicle with two pressurized compartments, one for liv-
ing and working and the other for descent. Soyuz cosmo-
nauts did not wear pressurized suits. After Soyuz 11, the crew
was reduced to two to make room for pressurized suits. The
hermetically sealed Soyuz cabin was designed for zero leak-
age. Soyuz T, a modified version of Soyuz, which retains the
basic size and shape of the Soyuz craft, has a redesigned inte-
rior to accommodate three space-suited cosmonauts. Soyuz
spacecraft are still used to ferry cosmonauts to and from the
orbiting Mir space station.

4) Salyut Space Stations (1971-1986)—Salyut was the first
spacecraft designed for extended missions in space and, thus,
became the world’s first space station. Since the beginning of
the Salyut program, seven Salyut stations were placed in or-
bit. With the overriding goal of establishing a permanent pres-
ence in space, Salyut was considered the comnerstone of So-
viet policy aimed at establishing human colonies on the Moon
and Mars.

Designed for a crew of five, Salyut consists of three in-
separable modules with a total usable volume of about 100
m3 (Ref. 2). Each successive Salyut improved on the previ-
ous station, although the basic configuration remained the
same. The ECLSS remained predominantly the same on the
Salyut stations until Salyut 6, when a water regeneration sys-
tem was added to recover condensate and wash water.

5) Mir Space Station (1986—present)}—Currently in Earth
orbit, the Mir space station is the third generation of Soviet
orbital stations, although the design of its core is basically
similar to that of Salyut 7. The Mir core, designed for a crew
of six in a habitable volume of about 150 m3 (Ref. 4), is the
first space station designed to accommodate growth by the
addition of modules. Mir uses several regenerative ECLSS
technologies. O, is produced by water electrolysis, and CO,
is removed by a four-bed molecular sieve system and vented
to space. Wastewater is also recovered. Research is currently
in progress to further advance the Mir ECLSS to increase the
closure.

D. Summary

A summary of the ECLSSs on past, present, and planned
spacecraft has been presented. The tabular summary allows
for ready comparison of spacecraft ECLSS design and de-
picts how the ECLSS has evolved (and continues to evolve)
from the early open systems to the nearly closed ECLSS space
station systems planned for the 1990s. As endeavors in manned
space flight continue, the knowledge of how to sustain hu-
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man life in space will continue to advance. The development
of techniques for regenerating atmosphere and water will re-
duce dependence on resupply from Earth, increasing the
chances for long-duration space voyages far from home. Fu-
ture ECLSSs may be completely closed, with as little depen-
dence as possible on outside sources for life-sustaining sup-
plies. Closed-loop ECLSSs will pave the way for human
settlements on the Moon and beyond, where regular resupply
from Earth may not be feasible. ECLSS evolution will make
the permanent human occupation of space more than simply
a dream.

I1. Common and Specific Mission Requirements
A. Overview

The basic architecture of the ECLSS can be divided into
requirements that are common and those that are mission spe-
cific. An example of a common requirement is the cabin air
ventilation flow range. An example of a mission specific re-
quirement is provision of food supply refrigeration.

In this discussion, we will use the planned Space Station
ECLSS as an example. The ECLSS is composed of six ma-
jor subsystem groups,’ which are interlinked with each other
as well as with external interfaces. The definition of the
ECLSS can be given by defining the six subsystem groups:
temperature and humidity control (THC), atmosphere con-
trol and supply (ACS), atmosphere revitalization (AR), wa-
ter recovery and management (WRM), waste management
(WM), and fire detection and suppression (FDS).

The subsystem groups can further be described by listing
the functions performed in them. THC consists of air tem-
perature control, humidity control, ventilation, equipment air
cooling, thermal conditioning, and airborne particulate and
microbial control. ACS encompasses O,N5 storage, distribu-
tion and resupply, venting, relief, and dumping, as well as
O;,N, partial and total pressure control. AR consists of CO,
removal, CO, reduction, O, generation, and trace chemical
contamination control and monitoring. WRM comprises urine
water recovery, wash water processing, potable water pro-
cessing, water storage and distribution, and water quality
monitoring. WM encompasses fecal waste collection, pro-
cessing or storage, and fecal return waste storage and han-
dling. FDS comprises fire detection and fire suppression.

B. General Requirements

Requirements which the ECLSS must meet fall into four
basic categories. The first and probably the most critical cat-
egory is related to crew health and is defined by medical per-
sonnel. The next category is related to environmental control
for equipment. The third involves general service provisions,
which are typically dictated by either programmatic or sys-
tem design considerations or overall system efficiency stud-
ies. The final category involves requirements derived from
the extrapolations of other requirements in the first three cat-

egories or derived to protect ECLSS equipment.

The ECLSS requirements must be based upon the nomi-
nal human mass balance, as defined in Table 3. This table
shows both input and output masses for food, liquids, and
gases. Variations will depend primarily on activity levels and
food water content. Table 4 shows a typical set of overall
atmospheric requirements with footnotes to elaborate. Those
requirements not specified here include electrical and elec-
tronic aspects (e.g., grounding and power stability specifica-
tions), material requirements (e.g., flammability and corro-
sion), structural and stress requirements (e.g., proof and burst
design levels), special safety issues (e.g., sharp edge elimina-
tion and locknut safety wiring), noise or vibroacoustic re-
quirements, and electromagnetic interference requirements.

C. Subsystem Group Requirements

The THC subsystem group must provide THC functions
over the entire pressurized volume under normal operations.
Adequate ventilation must be provided in all habitable areas,
including intraelement and interelement airflow. As an inte-
gral part of the air circulation, both particulate and microbial
control must be ensured. The ECLSS must be capable of pro-
viding air cooling to permanently mounted equipment (espe-
cially in enclosures such as racks). Refrigeration and freezer
capability must be provided for food and other items requir-
ing low-temperature storage. Table 4 gives specific tempera-
ture, humidity, and ventilation flow requirements. It should
be noted that the system will be capable of temperature se-
lection and control by the crew to a set-point value anywhere
in the range of achievable temperatures plus or minus 1 °C.

Ventilation flow is provided to all human-occupied zones
in a range of 5-13 m/min, with expectations of near-perfect
mixing and with no short circuiting of flow, or dead spots, in
the human-occupied volume. In addition, surface tempera-
tures must be maintained above the local dew point to avoid
condensation. Refrigeration is typically provided when non-
thermally-stabilized food is utilized. The temperature of re-
frigeration is 5 °C. Typically, food freezers operate at —32
°C; however, lower temperature operating regimes may be
desirable when the freezer is used for other purposes, such as
quick freezing of biological specimens or storage for special-
ized science purposes. Table 4 also details microbial and par-
ticulate requirements. Although one typical set of particulate
limits is given, the limits are generally a variable that may
differ considerably from mission to mission.

ACS subsystem group functions provide methods of regu-
lating and monitoring the air total pressure and selected par-
tial pressures. Storage, distribution, and supply of O, and N,
are provided. Vent, relief, and overboard bleed or dump ca-
pabilities are also provided as an ECLSS service. Sufficient
N, for makeup of leakage and required repressurization must
be provided, along with other support requirements, as nec-
essary. O for leakage, as well as metabolic makeup, with
added resources as necessary to support contingencies, is a
normal ECLSS-supplied service. Table 4 also provides total
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Table 3 Nominal crewmember metabolic balance, nonextravehicular activity

(kg/man-day)®
Input Output®

Food solids 0.62 Waste solids 0.11
Urine 0.06

Feces 0.03

Sweat 0.02

Liquids (water) 3.52 Waste liquids 3.86
Drink 1.61 Urine 1.50
Food preparation 0.76 Sweat and respiration 2.27
Food H,O content 1.15 Fecal H,O 0.09
Gases 0.83 Gascs 1.00
0O, 0.83 CO, 1.00
Total 4.97 Total 4.97

L
aAssuming metabolic rate = 2700 kcal/man-day and respiration quotient = 0.87.
bThe food and O, inputs are metabolized by the crewmember to produce 0.34 kg/man-day of metabolic water
(reflected in the waste liquids total) and 0.45 kg/man-day of CO,.

Table 4 Atmosphere requirements for Space Station (90-day)

Atmospheric requirement Units Operational Emergency
CO, partial pressure mmHg 3 max. 12 max.
Temperature deg C 19-27 15-33
Dew point? deg C 44-10 44-10
Ventilation m/min 5-13 1.5-60.0
O, partial pressure® kPa 19.5-22.4 15.6-23.5
Total pressure kPa 98.6-101.3 98.6-101.3
Dilute gas - N N2
Micro-organisms CFU/m3¢ 10004 10004
— s

3Relative humidity shall be within the range of 25-75 percent.
bIn no case shall the O, partial pressure be below 15.0 N/m? (2.3 psia) or the O, concentration exceed 23.8

percent of the total pressure.
¢Colony Forming Units (CFUs).

dThese values reflect a limited base. No widely sanctioned standards are available.

pressure as well as O, partial pressure requirements. In space-
craft atmospheres, monitoring of O, partial pressure and to-
tal pressure is a requirement.

The AR subsystem group conditions the air as necessary
to provide a safe and habitable environment for the crew.
Monitoring and control of atmospheric trace contaminants
and odor are provided, as well as the removal of CO,. The
reduction of CO; and generation of O are optional, depend-
ing on the level of closure desirable. Atmospheric trace con-
taminants and odors must be controlled, as necessary, to pre-
vent crew exposure to levels exceeding maximum allowable

concentrations. Crew generation of CO; during nominal pe-
riods is 1 kg/man-day. Breathable quality O, is supplied for
metabolic makeup at a rate to meet use demands. The nomi-
nal use rate of O is 0.83 kg/man-day. The trace contaminant
level is controlled at or below the Spacecraft Maximum Al-
lowable Concentration (SMAC).% Where near-real-time trace
contaminant readings are necessary, sensors must be capable
of detecting the SMAC for each constituent at accuracies
within £50 percent.

The WRM subsystem provides the collection, storage, and
dispensing of water to meet crew and selected other needs.
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Table 5 Nominal crewmember and cabin water balance, nonextravehicular activity
(kg/man-day) (general requirements for U.S. crewmembers)

Input Output
Crewmember metabolic and food
preparation:
Drink 1.61 Urine 1.50
Food H,0 content 1.15 Sweat and 2.27
respiration
Metabolized H,O 0.35 Fecal H,0 0.09
Food preparation, 0.79 Food preparation, 0.04
liquid latent
Total 3.90 Total 3.90
Cabin:
Clothes wash 12.46 Clothes wash
Liquid 11.86
Latent 0.60
Hygiene
Shower 5.44 Liquid 6.81
Hand wash 1.81 Latent 0.44
Urine flush H,O 0.49 Urine flush H,O 0.49
Total 20.20 Total 20.20
L —— —

Table 6 Water requirements
(general standards developed for U.S. crewmembers)

Parameter Units Operational Degraded Emergency
Potable water kg/man-day 31 3.1 3.1
Wash water kg/man-day 233 9.1 1.4

Water chemical, microbial, and physical control must be ac-
complished in accordance with accepted standards. Process-
ing of wastewater is optional. Urine, as well as fecal water,
may be recovered. Microbial control of water may be accom-
plished by a number of means. In the United States, iodina-
tion is typically required, with an average level of 2 parts per
million (ppm) normally used. Distribution services must in-
clude both purified water and wastewater. Dispensing must
include provisions for the storage and/or disposal of unused
waste, such as spent filters, resin beds, and brine recovery
residue. Provisions for wet trash and fecal water recovery are
optional.

Water thermal conditioning at the use or distribution point
may be provided in lieu of central conditioning. Nominal
metabolic input and output levels, including water balance,
used in the design of Space Station ECLSS are given in Table
5. It should be noted here that food water content dramati-
cally affects the overall water balance and may vary greatly
depending on the onboard refrigeration and freezer provisions,
crew preference, and medical considerations. Minimum wa-

ter quantity requirements are given in Table 6, using the cur-
rent Space Station design as an example. In all water recla-
mation systems, the capability should exist to recover from
upset conditions, especially microbial contamination. On-line
water monitoring and control are generally provided for the
following parameters: total organic concentration, resistiv-
ity, pH, biocide level, turbidity, and temperature.

The WM subsystem provides for the collection, storage
and/or processing, and disposal, if necessary, of human waste.
This will include considerations of urine, its residue where
applicable, and fecal matter. Fecal matter may be compacted
and treated (or stabilized), where feasible. Urine will be sta-
bilized and treated with biocide at the collection point where
feasible. Urine excreted by a crewmember will nominally be
1.5 kg/day. Typical crew dry fecal matter output is 0.03 kg/
man-day. Nominal water expected in fecal matter is 0.09 kg/
man-day.

FDS functions include the means for detecting and sup-
pressing fires internal to the pressurized volume. Fire
suppressant capability must be restorable after discharge. For
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multielement or zoned applications, annunciation of fires in
any element or zone must be made in all habitable elements
or zones. Fire control strategy must include identification of
fire location, and both fixed and portable fire suppressant
capability must be provided. Sufficient suppressant must be
stored onboard to ensure that the worst case and maximum
number of fire events can be properly dealt with in a safe and
timely fashion. Fires must also be detected early enough to
ensure sufficient time either to fight the fire locally or exit
the affected element safely while fighting the fire remotely.
Where multielement configurations are employed, fire an-
nunciation of a detected event and remote suppression dis-
charge capability to any other element should be employed.

D. Test Verification

The requirements for verification generally are related to
the maturity of the program, type of program, previous his-
tory of the equipment, and importance or criticality of the
equipment. As a result, test requirements may vary greatly.
In general, however, most equipment must undergo some form
of development, qualification, and acceptance testing. The
need for other testing, such as system-level tests, life testing,
and prior flight testing, depends on a number of variables.
One standard rule is that all items capable of functioning in
an Earth environment will be exercised prior to flight.

E. Support to Other Systems

Typically, the ECLSS may provide utility services to other
systems. These functions may include services from all
ECLSS subsystem groups. For example, the THC subsystem
group may provide equipment air cooling to all other sys-
tems as well as payloads. The ACS subsystem group may
provide gases to the man-system functions (e.g., health moni-
tors) or to payloads. In addition, other attached elements not
part of the basic element may be provided by the ECLSS. For
example, water or other ECLSS functions could be provided
temporarily (e.g., to a transient transfer vehicle) or continu-
ously (e.g., to a continuously docked module).

F. Special Subjects

Safety of the crew is of the utmost importance; conse-
quently, the issue of crew safety in an emergency is of spe-
cial interest. This condition has been referred to as “safe ha-
ven.” The allowed environment during safe haven typically
may be more relaxed than that required in the normal operat-
ing mode (Table 4), especially the life support parameters.
Another source of special design requirements is the pres-
ence of animals in the pressurized volume in which the crew
is also located. Separation of animal ECLSS function re-
sponsibilities must be carefully executed between the animal
enclosure design and the ECLSS. Another example of spe-
cial requirements might be the isolation of payload contami-
nants from the pressurized atmosphere. This is especiaily

important when the payload complement utilizes toxic sub-
stances in its equipment. In this event, it is advisable to re-
quire a payload containment vessel design with dual-failure
tolerance.

The determination of the correct closure approach is again
mission-scenario dependent. In the case of a design, such as
a small surface lander from a planet orbiting vehicle, a short-
duration rover, or an Earth-to-Moon transfer vehicle, where
mission times are short, an open-loop design will be indi-
cated. However, in a longer duration flight, such as a plan-
etary mission or a permanent planetary base, a closed-loop
design may be more attractive. Other topics of interest are
reliability and maintenance. Although optimization of these
features is always desirable, it will be appropriate to specify
them more rigorously on long-duration flights.

I11. The Potential Role of In-Situ Resources
for Life Support

The duration of mission, crew size, and distance from the
Earth are the key parameters in determining the cost of hu-
man exploration of outer space. One way to reduce the cost
of a mission is to provide a self-sufficient life support system
with no resupply from Earth. In order to achieve this goal,

1) Mission closure of the life support system functions
with the help of various regenerative support technologies is
required.

2) Utilization of in-situ resources may be needed to pro-
duce products and by-products that can be used for life sup-
port, power, and propulsion.”-8

A. Extraterrestrial In-Situ Resources

The continuous supply of four important elements—car-
bon, Oy, hydrogen, and No—is needed for a self-sustaining
life support system. The recovery and availability of these
elements from various extraterrestrial in-situ resources are
required to provide 0.9 kg/man-day of O,, 25 kg/man-day of
water, 0.6 kg/man-day of dry food, energy, and other expend-
able materials.?

Figure 1 illustrates the fact that regolith, subsurface, polar
caps, atmospheric gases of extraterrestrial bodies, and solar
energy are five major in-situ resources available in outer space.
The resources in the regolith are concentrated in two differ-
ent particle size ranges. The solar-wind-implanted particles
of size below 20 pm are rich in hydrogen and N5.!0 The par-
ticles Jarger than 20 um are oxides of aluminum, calcium,
chromium, iron, sodium, silicon, titanium, etc.!1:12 A useful
by-product of regolith processing may be the possible gen-
eration of propellants, such as silane,!3 and recovery of ura-
nium and thorium for thermoelectrical nuclear power plants. 14

The availability of water is an important issue in planning
the human exploration of outer space. Although O, is plenti-
ful in the lunar and martian regolith, water and hydrogen are
very scarce. The abundance of water in outer space is not
well understood; however, it is anticipated that frozen water
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Fig. 1 In-situ resources in outer space.

and CO, are available at the subsurface and polar caps of
Mars and on both moons of Mars, Phobos, and Deimos. 316
CO,, along with small amounts of water vapor, N», and ar-
gon, is also available in the atmospheric gases to produce O,
for life support.

B. In-Situ Resources on the Moon and Mars

There are a number of important in-situ resources avail-
able on the lunar surface:

1) The lunar regolith of particle sizes greater than 20 um:
The element composition data for the lunar regolith obtained
from several locations are shown in Table 7.}!

2) The lunar regolith of particle sizes larger than 20 um:
The concentration of hydrogen implanted from the solar wind
varies from 124—184 ppm at a depth above 150 cm to 84—104
ppm below that depth.!7 A range of 17-106 ppm hydrogen in
17 bulk soil samples from all Apollo missions was reported. '8
The other solar-wind-implanted gases in the lunar fine are
helium (0.5 g/g H3), helium-3 (0.0002 g/g H»), neon (0.05 g/
g Hy). and argon (0.01 g/g H,). For every gram of hydrogen
recovered from lunar fines, 1.7 grams of N5 are produced.

3) Extraction of nutrients from lunar soil to support agri-
cultural activities is an area that requires more research. Table
8 presents a comparison of the concentration of essential nu-
trients needed for plant growth and the concentration of nu-
trients available in the lunar soil.!?

4) For more advanced lunar settlements, the thorium and

uranium available in the lunar soil may be recovered to pro-
duce nuclear fuel to provide energy.

5) Since lunar soil is rich in O, and minerals (Table 7),
propellants, such as liquid O,, liquid hydrogen, and silane,
also have potential for being manufactured on the Moon.

The important in-situ resources available on the Mars sur-
face are as follows:

1) Martian soil, like lunar soil, is rich in O, and min-
erals.20

2) The atmospheric gases of Mars are rich in CO,.8

3) It is believed that large quantities of frozen water and
CO, are available at the martian polar caps.!> Similarly, the
presence of large quantities of frozen water and CO, is also
projected on two martian moons, Phobos and Deimos.

4) Sunlight is available 24 h/day.? This is an important in-
situ resource for the operation of energy-intensive regenera-
tive life support technology.

5) Martian soil, like lunar soil, provides a raw material to
produce micronutrients for plant growth.

6) Propellants, such as liquid hydrogen, liquid O, and si-
lane, may also be produced from martian resources.

C. In-Situ Resource Utilization (ISRU) Technologies

Recovery of O; and other materials from regolith, recov-
ery of hydrogen and N, from fine regolith, recovery of po-
table water from polar caps and the subsurface, generation of
O, from water and CO,, production of propellants, genera-
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Table 7 Elemental composition of lunar regolith!!

Element, % Source of Regolith
Mare High Basin

Al 7.29 5.8 725 546 821 143 122 921 928 109
Ca 866 759 754 696 863 112 100 771 627 9.19
Cr 021 031 024 036 0.2 0.07 0.1 0.15 0.19 0.18
Fe 122 136 120 153 127 4.03 57 10.3 9.0 6.68
K 0.12 006 022 008 008 009 006 046 0.14 0.13
Mg 4.93 5.8 598 6.81 53 352 559 571 628 6.21
Mn 016 019 017 019 016 005 008 0.11 0.12 0.08
Ma 033 026 036 023 027 035 026 052 031 0.3
(0] 416 397 423 413 416 446 446 438 438 422
P 005 003 014 005 006 005 005 022 007 0.06
S 0.12 0.13 0.1 006 021 006 008 008 0.08 0.06
Si 198 186 216 215 205 210 21.0 224 217 210
Ti 4.6 565 184 129 211 034 029 102 079 097

tion of electrical energy, and production of food are seven
major functions that could be utilized to produce materials
for life support.

For producing O, and other materials from regolith, the
regolith may be magnetically processed to separate pyrox-
ene and olivine, followed by electrostatic processing to sepa-
rate anorthite from ilmenite. In hydrogen reduction process-
ing, ilmenite is reduced in the presence of hydrogen at 923—
1273 K. Water is further electrolytically processed to pro-
duce hydrogen and O,. The by-products are iron and tita-
nium dioxide.

In the magma electrolysis process, ilmenite is melted at
1640 K and then electrolyzed to produce O,. The by-prod-
ucts are iron and titanium dioxide. In the carbochlorination
process, anorthite, along with carbon and chlorine, is reacted
at temperatures in the range of 848-1043 K. The gaseous metal
chlorides, along with carbon monoxide (CO), are passed
through a series of condensers. The first condenser removes
aluminum trichloride at 363 K, and the second condenser re-
moves CO from silicon tetrachloride and calcium chloride
salts at 243 K. The CO is further processed in a Bosch reactor
and water electrolysis units to produce O,.

In a carbothermal process, the magnesium silicate part of
the beneficiated regolith is reacted with methane at 1878 K.
Water is electrolyzed to produce O, and hydrogen. The mag-
nesium oxide and silicon are by-products of this process. In
an acid leach process, the mare regolith (unbeneficiated) is
processed with hydrofluoric acid at 283 K. The electrolysis
of water and iron hexafluorosilicate produces O,. Silicon tet-
rafluoride is processed to recover hydrogen fluoride. The by-
products are iron, aluminum, magnesium, calcium oxide, and
titanium dioxide. In a vapor-ion distillation process, regolith
is vaporized and ionized, followed by selective condensation
to obtain products as shown: Oj: 54 K; aluminum: 923 K;
titanium: 1943 K; iron: 1890 K; and magnesium: 922 K.

Hydrogen may be produced from regolith fines through
the use of microwave energy to heat the regolith to 873—1273
K to release adsorbed hydrogen from the materials.2! Water
could be produced from frozen polar caps and subsurface res-
ervoirs, with additional processing to produce potable qual-
ity water. The membrane-based reverse osmosis and the ad-
sorbent-based multifiltration are the technologies most com-
monly used for water purification.?? To generate O from
water and CO,, the static feed water electrolysis and solid
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Table 8 Comparison of essential plant growth nutrients
and lunar regolith availability

Nutrients Plant concentration, Lunar concentration,
percentage weight percentage weight

Carbon 18 0.011
Hydrogen 8 0.0055
Oxygen 70 40
Nitrogen 0.3 0.01
Phosphorous 0.07 04
Potassium 0.3 04
Calcium 0.5 9.0
Magnesium 0.04 6.0
Sulfur 0.07 0.5
Iron 0.01 9.0
Manganese 0.001 0.2
Boron 0.001 0.002
Molybdenum 0.00001 0.0001
Copper 0.0002 0.0013
Zinc 0.0005 0.0028
Chlorine 0.02 0.0026

polymer electrolysis are the most commonly used methods
for water electrolysis.22 High-temperature metal oxide mem-
branes may be used to electrolytically reduce CO, to O, and
CO0.22 The membrane provides selective transport of ions,
thus facilitating the separation of O, from CO. Propellants
such as O, and hydrogen could be cryogenically liquefied to
produce liquid hydrogen and O;.

Photovoltaic methods are a prime candidate to produce
clectricity on Mars, since adequate sunlight is available. On
both the lunar and martian surfaces, the combination of pho-
tovoltaics and regenerative fuel cells is a candidate for elec-
trical energy generation. Membrane-based and alkaline fuel
cell systems may be used for the generation of electricity.
‘The possibility of using in-situ thorium and uranium as nuclear
fuel also exists. However, electrical power generation using
space-derived nuclear fuels has yet to be demonstrated to be
feasible.

D. In-Situ Resource Usage (ISRU) for Extra-Terrestrial
Habitats

The significant in-situ resources available on the lunar sur-
face for physical-chemical life support systems are lunar re-
golith for O, generation and solar energy for power genera-

tion. The systems for mining lunar regolith and processing it
to generate O, have yet to be developed. Therefore, it is un-
realistic to predict weight savings in physical-chemical life
support systems that could be achieved by lunar regolith uti-
lization. Such predictions would have to trade the weight of
mining and processing equipment against that of the life sup-
port system.

Mars is an excellent site for ISRU. It is a source of O, N»,
hydrogen, CO5,, and water, in addition to available solar en-
ergy. For a Mars expedition mission, it is conceivable that a
physical-chemical life support system could function almost
totally from ISRU. A major contributor to the total life sup-
port system weight, the weight of the storage subsystem
(consumables and makeup supplies), could be drastically re-
duced with the help of ISRU technologies.

IV. Reliability of Physical-Chemical Life Support
Systems for Long-Term Nonresupply Missions

A. Overview
Future human space missions will require the development

of physical-chemical life support systems capable of sustain-
ing future astronauts in space for much longer durations than
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Fig. 2 Time to recover from a fault: No redundancy vs. single failure tolerance.

previous missions. Since the emphasis in these missions will
likely be directed away from orbit above the Earth to perma-
nent lunar or planetary bases or interplanetary flights, the next
generation of life support systems must provide highly reli-
able service while meeting weight, power, volume, resupply,
and cost constraints. Although life support systems for lunar
or planetary bases will evolve to make the best use of avail-
able resources, transfer vehicles designed to ferry astronauts
to and from these remote outposts may use ECLSS technol-
ogy first developed for Space Station and Mir. Based upon
flight experience with the Space Station and Mir programs,
repair and redundancy strategies should be well established
for long-term space endeavors. A conceptual life support sys-
tem with estimates of space weight and repair and redundancy
strategies is presented.

B. Statement of the Problem

The mission parameters for a human mission to Mars are
used to derive a set of generic requirements applicable to the
development of a long-term ECLSS. Although the duration
of a human mission to the outer planets in the solar system
would be much longer than for a visit to Mars, requirements
governing the development of an ECLSS for an Earth-to-Mars
transfer vehicle should be similarly relevant to any interplan-
etary mission. NASA’s 90-Day Study on Human Exploration
of the Moon and Mars outlined a plan to establish a lunar
outpost and perform a human visit to Mars early in the next
century.23 The lunar outpost, along with Space Station, may
be used as a development and staging area for the explora-
tion of Mars. The total round-trip duration for manned visits
to Mars early in the next century is expected to range be-
tween 500 and 800 days, depending on the trajectory of the

vehicle and the stay time in the martian system. Crew sizes
for these early missions are expected to be small (four to five
astronauts). The only mission resupply identified is a
preplanned rendezvous with a cargo vehicle in orbit around
Mars. The mission parameters are summarized as follows: 1)
mission duration of 1-3 years, 2) no unscheduled or contin-
gency resupply, 3) limited mission abort/rescue options, 4)
crew size of four, and 5) design to cost.

The mission duration, as well as the resupply and emer-
gency constraints, will require that the ECLSS be designed
within an established reliability requirement. Through analy-
sis and testing, it will have to be demonstrated with a high
degree of confidence that the ECLSS can operate satisfacto-
rily over the mission duration. Some hardware will be de-
signed to survive the mission with minimal repair, whereas
other components may be replaced several times. Designing
to cost may result in the use of life support equipment de-
rived from Space Station and Mir to a large extent. This could
minimize development costs and possibly minimize life test-
ing because of the available flight experience. The reliability
and maintainability design is key to meeting this requirement,
as the number of spares will represent a significant portion of
the launch weight.

C. Reliability and Maintainability Design Approach

Central to the design of a life support system for long-
term space missions are reliability and maintainability con-
siderations. Repair and redundancy strategies, system data
base development, reliability allocations, spare requirements,
and life testing must all be addressed to ensure an adequate
design. Two basic strategies exist in the design of reliable
systems.24.2 First, a system can be designed to survive a given
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Fig. 3 Estimated weight of life critical ECLSS MRU spares for two reliability require-
ments as a function of mission duration. Comparison of critical regenerative ECLSS
space MRU weight and open loop consumable weight as a function of mission duration.

mission duration with little or no repair. Backup assemblies
are available in the event of failure; and, in the case of manned
missions, only the most critical spares are provided. A sec-
ond approach is to design a maintainable system or, in other
words, a system that can be restored after failures. The main-
tainable system approach is more practical for human mis-
sions of longer duration where crew intervention is possible.
The maintainable system design must account for all of the
necessary spares. In this design approach, redundancy is
implemented primarily to circumvent the temporary loss-of-
time critical functions.

D. Repair and Redundancy Strategy

Future space vehicles will comprise a number of different
systems, such as life support, power, propulsion, and data
management. Each system can be divided into a number of
subsystem groups, with each subsystem group providing sev-

eral related functions. In the ECLSS architecture, for example,
all water reclamation and management functions for the re-
covery, monitoring, and distribution of potable and wash
waters are grouped under one subsystem group. Furthermore,
each group is subdivided into a number of subassemblies. In
the case of the ECLSS, a subassembly generally provides all
or part of a single function, such as CO, removal, avionics
cooling, or wash water recovery. To facilitate maintenance
and repair, each subassembly is further divided into a num-
ber of replaceable units and components. Subassemblies are
maintained through the replacement of specially defined sub-
components called mission replaceable units (MRUs). Each
subassembly is divided into a number of MRUs; MRU selec-
tion is optimized against individual mass and predicted fail-
ure rate. Other factors influencing MRU selection include the
number and type of connections (i.e., electrical, mechanical)
and accessibility within the subassembly.2 Repair below the
MRU level is permitted through the use of another replace-
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able subcomponent, called a mission replaceable component
(MRC). MRC:s allow for the use of common parts, primarily
sensors (although others are possible), between MRUs. A
failed MRU that would otherwise be rendered useless can be
returned to active service through the replacement of a much
less complex part, the MRC.

On-line redundancy of life support subsystems will be
implemented to minimize the effects of a disruption of ser-
vice due to failure. The level of failure tolerance will be de-
pendent upon the criticality of the function. Recovery from a
failure occurs in four steps: 1) detection, 2) isolation, 3) re-
pair, and 4) restoration. As shown in Fig. 2, the presence of
an on-line backup unit can reduce the total recovery time,
since the redundant system can be started while the primary
one is repaired. The life-critical nature of most ECLSS func-
tions demands at least single-failure tolerance, with dual- or
triple-failure tolerance preferred to cover protracted repair
times or multiple failures.

E. Reliability Allocations and Spare Requirements

Program reliability requirements for long-term space mis-
sions will likely be defined at the system or subsystem level.
Through maintenance, the ECLSS will be required to pro-
vide service with limited interruption for the duration of long-
term space missions. Since the ECLSS is a complex system
comprising different subsystems and subassemblies, the reli-
ability and maintainability design approach becomes a ques-
tion of how to allocate the high-level reliability requirements
down to the lowest components in the system. One method
would be to envision each high-level component, such as a
subsystem or subassembly, as a number of low-level compo-
nents, such as an MRU, connected in series. The low-level
reliability requirements are derived such that the higher level
requirement is met. Using the basic laws of probability,2425
reliability requirements are applied in succession at the sub-
system, subassembly, and MRU levels. Significant resource
reductions are possible if low-level reliability requirements
are optimized with regard to weight (i.e., a higher reliability
requirement should be allocated to a lighter component, such
as a sensor, rather than to a heavier component, such as a
compressor).

Using this approach and a data base constructed from Space
Station reliability and mass property data,2’ estimates of spare
weight were computed parametrically for life-critical ECLSS
hardware against mission duration and subassembly reliabil-
ity requirements. For demonstration purposes, each life-criti-
cal ECLSS subassembly was assumed to have a reliability
allocation of either 0.995 or 0.950, meaning a 99.5 percent or
95.0 percent probability of success over the given mission
duration. As expected, the weight of spares required to meet
a given requirement increases with increasing mission dura-
tion (Fig. 3). Also, the total number of spare MRUs required
to meet a given requirement was computed and is shown plot-
ted against mission duration in Fig. 4. The dependence on the
subassembly allocation is shown in Fig. 5 as the weight of

spare MRUs required to support a mission of 2 years in dura-
tion, plotted parametrically against subassembly allocation.
Again, the allocation of reliability requirements down to the
MRU level was not optimized with regard to individual MRU
weight. Weight savings are possible if heavier MRUs are al-
located a lower requirement whereas lighter MRUs are de-
signed to a more stringent requirement.

In light of the apparent excessive weight of spares needed
to support a regenerative ECLSS, a comparison against
consumables required for an open-loop ECLSS is shown in
Fig. 3. The weight of the consumables is based upon a crew
size of four and assumed requirements of 2.6 kg/man-day of
drinking water, 5.4 kg/man-day of wash water, and 0.8 kg/
man-day of O,. Although the weight of tankage is not in-
cluded in the comparison, the regenerative system shows a
clear advantage in launch weight. The installed weights of
both systems, as well as other penalties, such as power, would
have to be addressed for a complete trade.

F. System Data Base

A reliability and maintainability data base is essential to
the design of long-term ECLSSs. Reliability and maintain-
ability data, such as component failure rates and mean time
to repair (MTTR), will be used in system design trade-off
and analyses, along with weight, power, and volume estimates.
Future ECLSS data bases will make extensive use of Space
Station and Mir flight experience, as well as aircraft and sub-
marine data. As system development progresses, the data base
will be continually updated and validated against ground test
data.

The data base will likely be organized at the MRU level.
Each MRU field will contain entries for a predicted failure
rate mean time between failures (MTBF) and MTTR. The
MTTR projections will reflect the actual time required to re-
move and replace an MRU with an identical MRU, as this
will be the normal method of repair. The MTTR will account
for such factors as number of connections, connector type
(i.e., electrical and/or mechanical), and MRU accessibility
within the subassembly.2® The data base will also contain
entries for the MRU duty cycle and estimates for the MRU
weight and volume. The weight and volume entries will be
used to support logistics analyses to determine the total launch
weight and volume of spares required for a mission of given
duration. The data base may also include entries to indicate
the changeout frequency of consumable MRUs, such as par-
ticular filters or sorbent beds.

A number of data base entries will be quantities derived
from information contained elsewhere in the data base. Key
among these will be estimates for the number of spare MRUs.
As illustrated earlier, system reliability requirements will be
allocated to the MRU level. The estimates for crew mainte-
nance hours are computed from the individual MRU failure
rates and MTTR predictions.2627 As crew time is a critical
resource like weight or power, the ECLSS design must en-
sure that an inordinate amount of time is not consumed for
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maintenance when compared to other activities. An example
data base is provided in Table 9.

G. Life Testing

A test program must be implemented to qualify the long-
duration ECLSS before flight and to validate and/or partially
generate the reliability and maintainability data base used in
the design of the system. Life testing of subassemblies and
lower components will be used to validate predicted compo-
nent failure rates contained in the ECLSS data base or to ob-
tain new failure rates where existing data are nonexistent or
suspect. Additional tests using form and fit mockups or flight
quality hardware may be conducted to validate MTTR pre-
dictions.

The keys to implementing a successful life test program
are determining the number of trials necessary to establish
the average failure rate of a given subassembly or MRU and
deciding which subassemblies or MRUs to test. Obviously,
resources to conduct extensive life tests on every component
in the system will not be available. It will be necessary, through
similarity or existing flight data, to waive life testing on some
components in the system. Extensive flight data will likely
exist for a number of ECLSS components, including air and
liquid heat exchangers, fans, and sorbent beds. Of course,
new technologies with no previous flight experience will re-
ceive high priority for ground testing to substantiate failure
rate predictions contained in the engineering data base.
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